FlowNetwork class
A neural network for optical flow estimation.
Contents
A neural network which takes a sequence of images as input, and then outputs a flow/displacement vector field. This can be a flow network which estimates the motion between two frames.
Base classes
- class NeuralNetwork
- Neural network process object.
Constructors, destructors, conversion operators
- FlowNetwork() protected
Public functions
- auto create(std::string modelFilename, float scaleFactor, float meanIntensity, float stanardDeviationIntensity, std::vector<NeuralNetworkNode> inputNodes, std::vector<NeuralNetworkNode> outputNodes, std::string inferenceEngine, std::vector<std::string> customPlugins) -> std::shared_ptr<FlowNetwork>
- Create instance Python friendly constructor with almost all parameters.
- auto create(std::string modelFilename, std::vector<NeuralNetworkNode> inputNodes, std::vector<NeuralNetworkNode> outputNodes, std::string inferenceEngine, std::vector<std::string> customPlugins) -> std::shared_ptr<FlowNetwork>
- Create instance C++ friendly create with parameters that must be set before loading.
Protected functions
- void execute() override
Function documentation
std::shared_ptr<FlowNetwork> fast:: FlowNetwork:: create(std::string modelFilename,
float scaleFactor,
float meanIntensity,
float stanardDeviationIntensity,
std::vector<NeuralNetworkNode> inputNodes,
std::vector<NeuralNetworkNode> outputNodes,
std::string inferenceEngine,
std::vector<std::string> customPlugins)
Create instance Python friendly constructor with almost all parameters.
| Parameters | |
|---|---|
| modelFilename | Path to model to load |
| scaleFactor | A value which is multiplied with each pixel of input image before it is sent to the neural network. Use this to scale your pixels values. Default: 1.0 |
| meanIntensity | Mean intensity to subtract from each pixel of the input image |
| stanardDeviationIntensity | |
| inputNodes | Specify names, and potentially shapes, of input nodes. Not necessary unless you only want to use certain inputs or specify the input shape manually. |
| outputNodes | Specify names, and potentially shapes, of output nodes to use. Not necessary unless you only want to use certain outputs or specify the output shape manually. |
| inferenceEngine | Specify which inference engine to use (TensorFlow, TensorRT, OpenVINO). By default, FAST will select the best inference engine available on your system. |
| customPlugins | Specify path to any custom plugins/operators to load |
| Returns | instance |
std::shared_ptr<FlowNetwork> fast:: FlowNetwork:: create(std::string modelFilename,
std::vector<NeuralNetworkNode> inputNodes,
std::vector<NeuralNetworkNode> outputNodes,
std::string inferenceEngine,
std::vector<std::string> customPlugins)
Create instance C++ friendly create with parameters that must be set before loading.
| Parameters | |
|---|---|
| modelFilename | Path to model to load |
| inputNodes | Specify names, and potentially shapes, of input nodes. Not necessary unless you only want to use certain inputs or specify the input shape manually. |
| outputNodes | Specify names, and potentially shapes, of output nodes to use. Not necessary unless you only want to use certain outputs or specify the output shape manually. |
| inferenceEngine | Specify which inference engine to use (TensorFlow, TensorRT, OpenVINO). By default, FAST will select the best inference engine available on your system. |
| customPlugins | Specify path to any custom plugins/operators to load |
| Returns | instance |